30 research outputs found

    Universal quantum computation with little entanglement

    Full text link
    We show that universal quantum computation can be achieved in the standard pure-state circuit model while, at any time, the entanglement entropy of all bipartitions is small---even tending to zero with growing system size. The result is obtained by showing that a quantum computer operating within a small region around the set of unentangled states still has universal computational power, and by using continuity of entanglement entropy. In fact an analogous conclusion applies to every entanglement measure which is continuous in a certain natural sense, which amounts to a large class. Other examples include the geometric measure, localizable entanglement, smooth epsilon-measures, multipartite concurrence, squashed entanglement, and several others. We discuss implications of these results for the believed role of entanglement as a key necessary resource for quantum speed-ups

    Classical simulation complexity of extended Clifford circuits

    Full text link
    Clifford gates are a winsome class of quantum operations combining mathematical elegance with physical significance. The Gottesman-Knill theorem asserts that Clifford computations can be classically efficiently simulated but this is true only in a suitably restricted setting. Here we consider Clifford computations with a variety of additional ingredients: (a) strong vs. weak simulation, (b) inputs being computational basis states vs. general product states, (c) adaptive vs. non-adaptive choices of gates for circuits involving intermediate measurements, (d) single line outputs vs. multi-line outputs. We consider the classical simulation complexity of all combinations of these ingredients and show that many are not classically efficiently simulatable (subject to common complexity assumptions such as P not equal to NP). Our results reveal a surprising proximity of classical to quantum computing power viz. a class of classically simulatable quantum circuits which yields universal quantum computation if extended by a purely classical additional ingredient that does not extend the class of quantum processes occurring.Comment: 17 pages, 1 figur

    Classical simulations of Abelian-group normalizer circuits with intermediate measurements

    Full text link
    Quantum normalizer circuits were recently introduced as generalizations of Clifford circuits [arXiv:1201.4867]: a normalizer circuit over a finite Abelian group GG is composed of the quantum Fourier transform (QFT) over G, together with gates which compute quadratic functions and automorphisms. In [arXiv:1201.4867] it was shown that every normalizer circuit can be simulated efficiently classically. This result provides a nontrivial example of a family of quantum circuits that cannot yield exponential speed-ups in spite of usage of the QFT, the latter being a central quantum algorithmic primitive. Here we extend the aforementioned result in several ways. Most importantly, we show that normalizer circuits supplemented with intermediate measurements can also be simulated efficiently classically, even when the computation proceeds adaptively. This yields a generalization of the Gottesman-Knill theorem (valid for n-qubit Clifford operations [quant-ph/9705052, quant-ph/9807006] to quantum circuits described by arbitrary finite Abelian groups. Moreover, our simulations are twofold: we present efficient classical algorithms to sample the measurement probability distribution of any adaptive-normalizer computation, as well as to compute the amplitudes of the state vector in every step of it. Finally we develop a generalization of the stabilizer formalism [quant-ph/9705052, quant-ph/9807006] relative to arbitrary finite Abelian groups: for example we characterize how to update stabilizers under generalized Pauli measurements and provide a normal form of the amplitudes of generalized stabilizer states using quadratic functions and subgroup cosets.Comment: 26 pages+appendices. Title has changed in this second version. To appear in Quantum Information and Computation, Vol.14 No.3&4, 201

    Certifiability criterion for large-scale quantum systems

    Full text link
    Can one certify the preparation of a coherent, many-body quantum state by measurements with bounded accuracy in the presence of noise and decoherence? Here, we introduce a criterion to assess the fragility of large-scale quantum states which is based on the distinguishability of orthogonal states after the action of very small amounts of noise. States which do not pass this criterion are called asymptotically incertifiable. We show that, if a coherent quantum state is asymptotically incertifiable, there exists an incoherent mixture (with entropy at least log 2) which is experimentally indistinguishable from the initial state. The Greenberger-Horne-Zeilinger states are examples of such asymptotically incertifiable states. More generally, we prove that any so-called macroscopic superposition state is asymptotically incertifiable. We also provide examples of quantum states that are experimentally indistinguishable from highly incoherent mixtures, i.e., with an almost-linear entropy in the number of qubits. Finally we show that all unique ground states of local gapped Hamiltonians (in any dimension) are certifiable.Comment: 21 pages, 1 figure; V2: title changed plus minor changes in the text and some additional reference

    A Non-Commuting Stabilizer Formalism

    Full text link
    We propose a non-commutative extension of the Pauli stabilizer formalism. The aim is to describe a class of many-body quantum states which is richer than the standard Pauli stabilizer states. In our framework, stabilizer operators are tensor products of single-qubit operators drawn from the group αI,X,S\langle \alpha I, X,S\rangle, where α=eiπ/4\alpha=e^{i\pi/4} and S=diag(1,i)S=\operatorname{diag}(1,i). We provide techniques to efficiently compute various properties related to bipartite entanglement, expectation values of local observables, preparation by means of quantum circuits, parent Hamiltonians etc. We also highlight significant differences compared to the Pauli stabilizer formalism. In particular, we give examples of states in our formalism which cannot arise in the Pauli stabilizer formalism, such as topological models that support non-Abelian anyons.Comment: 52 page

    A monomial matrix formalism to describe quantum many-body states

    Full text link
    We propose a framework to describe and simulate a class of many-body quantum states. We do so by considering joint eigenspaces of sets of monomial unitary matrices, called here "M-spaces"; a unitary matrix is monomial if precisely one entry per row and column is nonzero. We show that M-spaces encompass various important state families, such as all Pauli stabilizer states and codes, the AKLT model, Kitaev's (abelian and non-abelian) anyon models, group coset states, W states and the locally maximally entanglable states. We furthermore show how basic properties of M-spaces can transparently be understood by manipulating their monomial stabilizer groups. In particular we derive a unified procedure to construct an eigenbasis of any M-space, yielding an explicit formula for each of the eigenstates. We also discuss the computational complexity of M-spaces and show that basic problems, such as estimating local expectation values, are NP-hard. Finally we prove that a large subclass of M-spaces---containing in particular most of the aforementioned examples---can be simulated efficiently classically with a unified method.Comment: 11 pages + appendice

    Commuting quantum circuits: efficient classical simulations versus hardness results

    Full text link
    The study of quantum circuits composed of commuting gates is particularly useful to understand the delicate boundary between quantum and classical computation. Indeed, while being a restricted class, commuting circuits exhibit genuine quantum effects such as entanglement. In this paper we show that the computational power of commuting circuits exhibits a surprisingly rich structure. First we show that every 2-local commuting circuit acting on d-level systems and followed by single-qudit measurements can be efficiently simulated classically with high accuracy. In contrast, we prove that such strong simulations are hard for 3-local circuits. Using sampling methods we further show that all commuting circuits composed of exponentiated Pauli operators e^{i\theta P} can be simulated efficiently classically when followed by single-qubit measurements. Finally, we show that commuting circuits can efficiently simulate certain non-commutative processes, related in particular to constant-depth quantum circuits. This gives evidence that the power of commuting circuits goes beyond classical computation.Comment: 19 page
    corecore